Application of the SALSSA framework to the validation of smoothed particle hydrodynamics simulations of low Reynolds number flows
نویسندگان
چکیده
The Support Architecture for Large-Scale Subsurface Analysis (SALSSA) provides an extensible framework, sophisticated graphical user interface (GUI), and underlying data management system that simplifies the process of running subsurface models, tracking provenance information, and analyzing the model results. The SALSSA software framework is currently being applied to validating the Smoothed Particle Hydrodynamics (SPH) model. SPH is a three-dimensional model of flow and transport in porous media at the pore scale. Because fluid flow in porous media at velocities common in natural porous media occur at low Reynolds numbers, it is important to verify that the SPH model is producing accurate flow solutions in this regime. Validating SPH requires performing a series of simulations and comparing these simulation flow solutions to analytical results or numerical results using other methods. This validation study has been greatly aided by the application of the SALSSA framework, which provides capabilities to setup, execute, analyze, and administer these SPH simulations.
منابع مشابه
Incompressible smoothed particle hydrodynamics simulations on free surface flows
The water wave generation by wave paddle and a freely falling rigid body are examined by using an Incompressible Smoothed Particle Hydrodynamics (ISPH). In the current ISPH method, the pressure was evaluated by solving pressure Poisson equation using a semi-implicit algorithm based on the projection scheme and the source term of pressure Poisson equation contains both of divergence free ve...
متن کاملA MODIFIED COMPRESSIBLE SMOOTHED PARTICLE HYDRODYNAMICS (MCSPH) METHOD AND ITS APPLICATION ON THE NUMERICAL SIMULATION OF LOW AND HIGH VELOCITY IMPACTS
In this study a Modified Compressible Smoothed Particle Hydrodynamics (MCSPH) method is introduced which is applicable in problems involve shock wave structures and elastic-plastic deformations of solids. As a matter of fact, algorithm of the method is based on an approach which descritizes the momentum equation into three parts and solves each part separately and calculates their effects on th...
متن کاملSimulation of Gravity Wave Propagation in Free Surface Flows by an Incompressible SPH Algorithm
This paper presents an incompressible smoothed particle hydrodynamics (SPH) model to simulate wave propagation in a free surface flow. The Navier-Stokes equations are solved in a Lagrangian framework using a three-step fractional method. In the first step, a temporary velocity field is provided according to the relevant body forces. This velocity field is renewed in the second step to include t...
متن کاملNumerical Simulation of Granular Column Collapses with Pressure-Dependent Viscoplastic Model using the Smoothed Particle Hydrodynamic Method
This paper presents a numerical analysis of granular column collapse phenomenon using a two-dimensional smoothed particle hydrodynamics model and a local constitutive law proposed by Jop et al. This constitutive law, which is based on the viscoplastic behaviour of dense granular material flows, is characterized by an apparent viscosity depending both on the local strain rate and the local press...
متن کاملSimulation of Cold Rolling Process Using Smoothed Particle Hydrodynamics (SPH)
Regarding the reported capabilities and the simplifications of the smoothed particle hydrodynamics (SPH) method, as a mesh-free technique in numerical simulations of the deformation processes, a 2-D approach on cold rolling process was provided. Using and examining SPH on rolling process not only caused some minor developments on SPH techniques but revealed some physical realities. The chosen t...
متن کامل